NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 4 Fall 2023

Problem 4

In the Fibonacci sequence, $1, 1, 2, 3, 5, \ldots$ each term after the second is the sum of the previous two terms. How many of the first 100 terms of the Fibonacci sequence are odd?

Solution: Consider the parity of the Fibonacci numbers:

```
odd, odd, even, odd, odd, even, odd, odd, even, ...
```

The pattern odd, odd, even repeats itself. This is indeed the case because

$$odd + odd = even,$$

 $odd + even = odd,$
 $even + odd = odd.$

Therefore, we know the first 99 terms of the Fibonacci sequence have 66 odd numbers and 33 even numbers. Moreover, the 100^{th} number should be an odd number. In total, there are 67 odd numbers.

Remark: We observed here that the sequence $\{F_n \mod 2\}$ is periodic, where it repeats every 3 terms. In fact, the sequence $\{F_n \mod m\}$ is periodic for any m. The length of this period is called the Pisano period, denoted by $\pi(m)$. In this question, we observed that $\pi(2) = 3$. This turns out to be the only odd Pisano number. You can read more about it here: https://en.wikipedia.org/wiki/Pisano_period