NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 4

Fall 2023

Problem 4

In the Fibonacci sequence, $1,1,2,3,5, \ldots$ each term after the second is the sum of the previous two terms. How many of the first 100 terms of the Fibonacci sequence are odd?

Solution: Consider the parity of the Fibonacci numbers:
odd, odd, even, odd, odd, even, odd, odd, even, ...

The pattern odd, odd, even repeats itself. This is indeed the case because

$$
\begin{aligned}
o d d+\text { odd } & =\text { even }, \\
\text { odd }+ \text { even } & =\text { odd }, \\
\text { even }+ \text { odd } & =\text { odd. }
\end{aligned}
$$

Therefore, we know the first 99 terms of the Fibonacci sequence have 66 odd numbers and 33 even numbers. Moreover, the $100^{\text {th }}$ number should be an odd number. In total, there are 67 odd numbers.
Remark: We observed here that the sequence $\left\{F_{n} \bmod 2\right\}$ is periodic, where it repeats every 3 terms. In fact, the sequence $\left\{F_{n}\right.$ mod $\left.m\right\}$ is periodic for any m. The length of this period is called the Pisano period, denoted by $\pi(m)$. In this question, we observed that $\pi(2)=3$. This turns out to be the only odd Pisano number. You can read more about it here: https://en.wikipedia. org/wiki/Pisano_period

